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Gravity and shear wave stability of free surface 
flows. Part 1. Numerical calculations 

By R. W. CHINt, F. H. ABERNATHY AND J. R. BERTSCHYS 
Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 

(Received 25 April 1984 and in revised form 9 January 1986) 

The linear, two-dimensional stability of flows down an inclined plane has been 
examined at large Reynolds numbers. Both the surface and shear wave modes have 
been numerically investigated, involving changes in angle of inclination, surface 
tension, and form factor. 

1. Introduction 
The stability of the free surface flow down an inclined plane has been of interest 

for a number of years. The main concern has been low Reynolds number (Re based 
on surface velocity Us, and depth H) flows which are important in coating processes. 
Yih (1963) correctly formulated the problem for small disturbances, and obtained the 
critical Reynolds number Rec as t cot (0) (where B is the angle of inclination) for the 
surface mode of the parabolic, mean-velocity profile at zero surface tension. This 
gravity wave travelled a t  a speed greater than the surface velocity, and at low Re, 
controlled the overall stability of the flow. Graef (1966) used expansions in various 
functions to analytically determine constant-growth curves for different values of B 
and surface tension cr for Re < 150. Pierson & Whitaker (1974) numerically calculated 
stabilizing effects of surface tension for the vertical film flow for Re < 1OOO. As Re 
and cr increased, Anshus (1972) extracted a number of asymptotic results. 

For large-Re flows, a growing shear mode is also possible, travelling at fluid-particle 
speeds. Lin (1967) analytically solved for the neutral growth curve. However, an 
incorrect surface boundary condition was used. De Bruin (1974) numerically solved 
the correctly formulated problem, involving zero surface tension, but varying angle 
of inclination. 

Present interest in the inclined plane geometry arises from polymer-flow experiments 
on a wide water channel (large flow width to depth ratio) as described in Bertschy, 
Chin & Abernathy (1983), Abernathy et al. (1980), and Bertschy & Abernathy (1977). 
However, some missing information on the stability of the inclined flow was needed 
as a basis of comparison to the polymer-flow experiments. 

The objective of this paper, therefore, is to extend previous numerical results on 
the stability of the inclined plane flow. Surface-tension effects will be investigated 
a t  large Re. Form factor FF (displacement thickness/momentum thickness) effects 
will also be calculated because of the interest in developing flows on a water channel. 
Both gravity and shear modes will be considered. Section 2 summarizes the analysis, 
while 8 3 discusses the numerical results. Measurements of shear-wave characteristics 
will be compared with theory in a future paper. 

t Present address: Shell Development Company, Westhollow Research Center, P.O. Box 1380, 
Houston, Texas 77001. 

1 Present address: IBM, G.P.D. Lab., Dept. F-44005,5600 Cottle Road, San Jose, Calif. 95193. 
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2. Stability analysis 
The present calculations will consider the linear stability of the streamwise (x), 

mean-velocity profile U(y), where y is the vertical coordinate. The wall is located at 
y = 0, and the free surface at y = 1. All velocities, distances and time have been 
non-dimensionalized by Us, H and H/Us respectively. 

The fluctuation velocities u and v in the x- and y-directions respectively, are 
obtained from the stream function $(z, y), as 

with $(x, y, t )  = $(y) eia(z-ct), 

where a is the wave number, c the wave velocity, and t the time. Two-dimensional 
disturbances are considered because Squire’s (1933) theorem is valid for the present 
free-surface flow. 

The appropriate stability equation for infinitesimal disturbances is the well-known 
Orr-Sommerfeld eigenvalue equation, 

$iV-2aa$”+a4$ = ia Re( [(a-c)($”-aaq5)- F$], (1) 

where $(y) is the amplitude of the stream function, and the ’ denotes differentiation 
with respect to y, i.e. a/ay. The boundary conditions are 

$ ( O )  = 0, (W 
$‘(O) = 0, ( 2 b )  

a$[2 cot$+aZy(Rea - sin$)-;] 
u-c i$’” + $’ [ - 3ia2 + a Re ( U- c) - = 0 at y =  1, (3) 

and 
i? 

$“+$[aa-E] = 0 at y = 1. (4) 

Equations (2a, b) are the no-slip conditions at the wall, y = 0. Equations (3) and (4) 
represent the normal and zero-shear conditions at the free surface, y = 1. The 
parameter y = (a/p)[2/(gv4)]i (where p is the density, v the kinematic viscosity, and 
g the gravitational constant) controls the effect of surface tension, and is approximately 
4300 for water at room temperature. Temporal stability will be considered, i.e. a = cc, 
is real, and c = cT = cTr+icn is complex. Growth (decay) is then determined by 
c, > 0 (c, < 0). The neutral curve is determined by c, = 0. For comparison with 
experiment, one should consider spatial decay where the wavenumber a = as = 
%,.+i%, is complex, and the frequency, cu: = us, is real. Gaster’s (1962) trans- 
formation is then used to relate spatial and temporal parameters, i.e. us = aT cTr = w ,  
%, = aT, and si = - cc, c,/cg, where cg is the group velocity. cg is determined from 
the slope of the frequency-wavenumber relationship aa aw/i3aT. 

The family of mean-velocity profiles to be considered is 

U(y) = 2y- y2 + a( -4y+ 1 iya - 9ys+ y4 + y5). ( 5 )  

The above satisfies U(0) = 0, U(1) = 1, and U”( 1) = - 2. The last requirement is made 
in order that the free-surface boundary conditions remain unchanged. When a = 0, 
one recovers the asymptotic, parabolic velocity profile. The above was chosen to 
simulate the developing flow on a water channel (Bertschy et al. 1983). Although the 
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FIGURE 1 .  Dimensionless mean-velocity profiles. Form factors from left to right are 
FF = 2.57, 2.50, 2.44 and 2.38. 

flow can be numerically calculated, the present intent is to obtain a general idea of 
the effects of form factor on stability. 

The Orr-Sommerfeld equation was solved numerically using a 100-step Thomcts 
(1953) finite-difference technique on a Vax 11/780 using double-precision arithmetic. 
As a check on the calculations, near orthonormalization (Gersting & Jankowski 1972) 
and compound matrix (Ng & Reid 1980) methods were also employed. Kaufman's 
(1972) LZ method was used to obtain the initial eigenvalue estimates. Chin (1981) 
contains further information on the calculations. Only one surface wave was found, 
and only the lowest shear mode was found to become unstable. These two modes were 
investigated in detail, and results are discussed in the following section. The 
higher-shear modes were found to be as complex in nature as those in plane Poiseuille 
flow as discussed in Grosch & Salwen (1968). 

Four profiles from (5) were chosen to test form-factor effects. The FF's of these 
profiles were 2.57, 2.5 (parabola), 2.44, and 2.38 corresponding to a = 0.05, 0.0, 
-0.05, and -0.1 respectively. The surface tension parameter 8 assumed the values 
of 0, 2140, and 4280 (20 "C), while the angle of inclination was either lo, 4O, or 
90". Plane Poiseuille flow was also investigated for comparison. 

3. Numerical calculations 

Figure 1 shows the mean-velocity profile variations. Fullness of the profile indicates 
lower form factor with FF = 2.5 referring to a parabolic shape. 

Figure 2 shows the neutral curves of the surface mode for FF = 2.5, but different 
values of surface tension. Increasing surface tension is a stabilizing effect. Anshus 
(1972) calculated analytically a j power law for the surface mode at  high Re. As can 
be seen, the present calculations substantiate the law. Figure 3 presents constant-c, 
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FIQURE 2. Gravity-mode neutral curves showing effects of varying angle and surface-tension 
parameter. FF = 2.50. 
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FIQURE 3. Constant c+i curves of the gravity mode. FF = 2.50, tl = 4', y = 4280. 
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FIQURE 4. Gravity-mode wave velocities of neutral disturbances showing effects of angle and 
surface tension. FF = 2.50. 

curves for a particular flow. Figure 4 shows the gravity-wave velocity of various 
neutral curves. The wave speed increases (decreases) as B(y) decreases. All curves 
initially start from cTr = 2 at the critical Reynolds number Re,. At higher Re they 
asymptotically approach the surface velocity. No critical layer, where wave speed 
equals fluid speed, exists. Form factor has little effect on the surface mode. Calculated 
neutral curves for y = 4280, but different form factors, lie on top of the corresponding 
curve in figure 2. If the boundary conditions were allowed to take account of the 
streamwise curvature of the mean profile, little change would be expected because 
of the small effect on Re,. 

Figure 5 presents growth rates (aTcTi) versus aT at a constant Re of 2500. This 
is a typical value for the water-channel flows in Bertschy (1979). If one assumes that 
parabolic flow exists from the top of the table with Q = 16.7 cm2/s, u = 1.0 cs, then 
one obtains H = 0.194 cm and Us = 129 cm/s. The maximum growth rate of 
figure 5 is approximately 4 s-l. The wave velocity is about 130 cm/s so that the wave 
will travel the 180 cm length of the water channel in 1.5 a. In  this time, the wave will 
have grown (barring nonlinear effects) to ee or 400 times its original size. However, no 
evidence of growing modes were seen on the water table owing to numerous calming 
devices. 

Figure 6 presents neutral curves for the shear mode for three different angles. A 
plane Poiseuille flow neutral curve is also shown for comparison. Decreasing the angle 
from 90" to 1' results in a slight decrease in stability. At large Re, the branches for 
the plane-Poiseuille-flow curve follow 3- and &-power laws (Lin 1954). From figures 6 
and 7, it appears that similar asymptotes exist for the inclined-plane flow. 

Figure 7 shows that increasing the surface-tension parameter from 0 to 4280 results 
in a slight destabilization. The merging of the curves at  large Re reflects the 
insensitivity of y in the normal-stress condition (3). 
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FIGURE 5. Gravity-mode amplification rates at Re = 2500, 6 = 4', y = 4280. 

FIQURE 6. Shear-mode neutral curves showing effects of varying angle. Plane Poiseuille curve is 
also shown. FF = 2.50, y = 4280. 
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FIGURE 7. Shear-mode neutral curves showing effects of varying surface tension. 
FF = 2.50, e = 40. 

Figure 8 shows the shear wave velocities for two neutral curves. Change in angle 
and surface tension have little effect, as expected from previous figures. Note that 
the velocity is a double-valued function of Re, but always less than the surface 
velocity. A critical layer (where fluid velocity equals wave velocity) exists at which 
c T r z  0.25. Figure 9 presents the double-valued, constant-c,, curves for the shear 
mode. The enormous effect of form factor is seen in figure 10. A 7 % decrease in FF 
increases Re, by an order of magnitude from 2200 to 20000. One can expect that the 
velocity profiles near the top of the water table have Re, in the hundreds of thousands. 
Hence, the water-table flow has decreasing stability as it proceeds down the glass. 

In  anticipation of experimental results, figure 11 presents temporal decay rates as 
a function of wavenumber for varying FF, but at a constant Re. A5 expected, there 
is increasing decay level with decreasing FF. There is a minimum in decay, while the 
wavenumber at this minimum remains approximately the same. 

Mode shapes were also calculated. Figures 12 and 13 show the real and imaginary 
parts of #(y) for both modes on their respective neutral curves for a, = 1.04. It is 
clear that the two mode shapes are different. The amplitude uA of the u-fluctuation 
is shown in figure 14 for the two modes on normalized coordinates. The phase of the 
u-fluctuation across the layer is shown in figure 15. There is no phase change in the 
flow down an inclined plane as there is in a Blasius boundary-layer flow. 

Because of the interest in polymer solutions, some exploratory calculations were 
made with the Maxwell stress-strain relationship (Bird, Armstrong & Hassager 1977). 
It will suffice to state that increasing the fluid relaxation time results in destabilization 
for the shear mode. This was also found to be true for plane Poiseuille flow. More 
information on plane Poiseuille flow is contained in Porteous & Denn (1972), and Ho 
& Denn (1977). Destabilization is also predicted for the surface mode, following the 
calculations of Yih (1963). 

17 FLM 168 
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FIQURE 8. Shear-mode wave velocities of neutral disturbances. FF = 2.50, y = 4280. 

FIQURE 9. Constant-c, curves for the shear mode. FF = 2.50, 0 = 4 O ,  y = 4280. 
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FIGURE 10. Shear-mode neutral curves showing effects of form factor. 0 = 4', y = 4280. 
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FIGURE 11. Decay rates of shear mode at Re = 2000, showing form-factor effects. 
e = 40, = 4280. 
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FIQURE 12. Gravity-mode eigenfunction profile. cT = 1.295+0.0i, aT = 1.04, FF = 2.5, 
e = 4', y = 4280, Re = 122. 
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FIGURE 14. Amplitude of the u-fluctuation velocities determined from figures 12 and 13. 
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FIGURE 15. Phase profiles of the u-fluctuation velocities determined from figures 12 and 13. 
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It appears from previous calculations for both Newtonian and Maxwell fluids that, 
as far as the shear mode is concerned, one can consider the inclined plane flow to be 
plane Poiseuille. One can then surmise that Oldroyd, second-order as well as Maxwell, 
models will predict destabilization for the inclined plane flow (Kundu 1972; Porteous 
& Denn 1972). 

On the other hand, one can draw a conclusion for the polymer solution flows from 
the form-factor effects. Drag-reducing polymer solutions, such as polyethylene oxide 
and polyacrylamide, are shear thinning fluids. The velocity provides of laminar 
polymer flows would then be fuller than those of corresponding water flows and hence 
have smaller form factors. These profiles would then be more stable. Of course, one 
must consider the extra terms in the Odommerfeld equation arising from the 
spatial dependence of viscosity. However, from the present calculations and those 
of Obremski, Morkovin & Landahl(1969), the form factor is the dominant parameter. 

4. Summary 
One can summarize the numerical calculations as follows. For the surface mode 

in the flow parameter range of interest (8 > l 0 , O  < y < 5000, 1000 < Re < lO,OOO), 
we have that, 

(i) the flow is moderately destabilized as 8 increases, 
(ii) the flow is stabilized by increasing surface tension, and 
(iii) form factor has little effect. 

(i) the flow is slightly stabilized as 8 increases, 
(ii) the flow is slightly destabilized as surface tension increases, and 
(iii) form-factor effects are enormous. 

For the shear mode, we conclude that, 
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